

    
      
          
            
  


methylize documentation


Getting Started

methylize is a python package for analyzing output from Illumina methylation arrays. It complements methylprep and methylcheck and provides methods for computing differentially methylated probes and regions, and annotating these regions with the UCSC Genome Browser.  View on ReadTheDocs. [https://life-epigenetics-methylize.readthedocs-hosted.com/en/latest/]
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methylize is part of the methylsuite

methylize is part of the methylsuite [https://pypi.org/project/methylsuite/] of python packages that provide functions to analyze DNA methylation data from Illumina’s Infinium arrays (27k, 450k, and EPIC, as well as mouse arrays). This package is focused on analysis of processed methylation data, such as EWAS using Manhattan and Volcano plots.
methylize functions are designed to work with a minimum of knowledge and specification required. But you can always override the “smart” defaults with custom settings if the default settings don’t work for your data. The entire methylsuite is designed in this format: to offer ease of use while still maintaining flexibility for customization as needed.



Methylsuite package components

You should install all three components, as they work together. The parts include:


	methylprep: for processing idat files or downloading GEO datasets from NIH. Processing steps include


	infer type-I channel switch


	NOOB (normal-exponential convolution on out-of-band probe data)


	poobah (p-value with out-of-band array hybridization, for filtering low signal-to-noise probes)


	qualityMask (to exclude historically less reliable probes)


	nonlinear dye bias correction (AKA signal quantile normalization between red/green channels across a sample)


	calculate beta-value, m-value, or copy-number matrix


	large batch memory management, by splitting it up into smaller batches during processing






	methylcheck: (this package) for quality control (QC) and analysis, including


	functions for filtering out unreliable probes, based on the published literature


	Note that methylprep process will exclude a set of unreliable probes by default. You can disable that using the –no_quality_mask option from CLI.






	sample outlier detection


	array level QC plots, based on Genome Studio functions


	a python clone of Illumina’s Bead Array Controls Reporter software (QC)


	data visualization functions based on seaborn and matplotlib graphic libraries.


	predict sex of human samples from probes


	interactive method for assigning samples to groups, based on array data, in a Jupyter notebook






	methylize provides more analysis and interpretation functions


	differentially methylated probe statistics (between treatment and control samples)


	volcano plots (which probes are the most different?)


	manhattan plots (where in genome are the differences?)
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Installation

pip3 install methylize





Installation will also install the other parts of the methylsuite (methylprep and methylcheck) if they are not already installed.


	If progress bar is missing:

	If you don’t see a progress bar in your jupyterlab notebook, try this:





- conda install -c conda-forge nodejs
- jupyter labextension install @jupyter-widgets/jupyterlab-manager







Methylize Package

The methylize package contains both high-level APIs for processing data from local files and low-level functionality allowing you to analyze your data AFTER running methylprep and methylcheck. For greatest usability, import methylize into a Jupyer Notebook along with your processed sample data (a DataFrame of beta values or m-values and a separate DataFrame containing meta data about the samples).

Methylize allows you to run linear or logistic regression on all probes and identify points of interest in the methylome where DNA is differentially modified. Then you can use these regression results to create volcano plots and manhattan plots.


Sample Manhattan Plot

[image: Manhattan Plot]
 [https://github.com/FoxoTech/methylize/blob/master/docs/manhattan_example.png?raw=true][image: Manhattan Plot (alternate coloring)]
 [https://github.com/FoxoTech/methylize/blob/master/docs/manhattan_example2.png?raw=true]

Sample Volcano Plot

[image: Volcano Plot]
 [https://github.com/FoxoTech/methylize/blob/master/docs/volcano_example.png?raw=true]Customizable: Plot size, color palette, and cutoff p-value lines can be set by the user.
Exporting: You can export all probe statistics, or just the significant probes as CSV or python pickled DataFrame.




Differentially methylated position/probe (DMP) detection

The diff_meth_pos(meth_data, phenotypes) function searches for individual differentially methylated positions/probes
(DMPs) by regressing methylation beta values or M-values for each sample at a given
genomic location against the phenotype data for those samples.


Phenotypes

Can be provided as

- a list of strings,
- integer binary data,
- numeric continuous data
- pandas Series, DataFrame or numpy array





Only 2 phenotypes are allowed with logistic regression. Use Linear regression with numeric (measurement) phenotypes like age or time. You can pass in the GEO meta DataFrame associated with a dataset along with column=<columnname> kwarg. The order of the items in the phenotype should match the order of samples in the beta values or M-values.

Covariates are also supported for logistic (but not linear) regression. Pass in covariates=True to treat all other columns in a phenotype DataFrame as covariates, or pass in a list of column names to specify specific parts of the DataFrame. Note that supplying too many covariates for small sample sizes will lead to most probes failing with Linear Algebra or Perfect Separation errors.

For details on all of the other adjustable input parameters, refer to the API for diff_meth_pos()



Returns

A pandas dataframe of regression statistics with one row for each probe
and these columns:

- `Coefficient`: regression coefficient
- `StandardError`: standard error
- `95%CI_lower`: lower limit of the coefficient's 95% confidence interval
- `95%CI_upper`: upper limit of the coefficient's 95% confidence interval
- `PValue`: p-value: phenotype group A vs B - likelihood that the difference is significant for this probe/location
- `Rsquared`: proportion (0 to 1) of probe variance explained by your phenotype. Linear Regression Only.
- `FDR_QValue`: p-values corrected for multiple comparisons using the Benjamini-Hochberg FDR method. The False Discovery Rate (FDR) corrected p-values will remain comparable, regardless of the number of additional comparisons (probes) you include.

If a `q_cutoff` is specified, only probes with significant q-values less than the cutoff will be returned in the DataFrame.








Differentially methylated regions (DMR)

Pass in your diff_meth_pos (DMP) stats results DataFrame as input, and it will calculate and annotate differentially methylated regions (DMR) using the combined-pvalues pipeline. This function returns list of output files.

- calculates auto-correlation
- combines adjacent p-values
- performs false discovery rate (FDR) adjustment
- finds regions of enrichment (i.e. series of adjacent low p-values)
- assigns significance to those regions
- annotates significant regions with possibly relevant nearby Genes,
  using the UCSC Genome Browser Database
- annotates candidate genes with expression levels for the sample tissue type,
  if user specifies the sample tissue type.
- returns everything in a CSV that can be imported into other Genomic analysis packages.





For more details on customizing the inputs and outputs, see API for the diff_meth_regions(stats, array_type) function.



Loading processed data

Assuming you previously used methylprep to process a data set like this:

python -m methylprep -v process -d GSE130030 --betas





This creates two files, beta_values.pkl and sample_sheet_meta_data.pkl. You can load both in methylize like this:

Navigate to the folder where methylrep saved its processed files, and start a python interpreter:

>>>import methylcheck
>>>data, meta = methylcheck.load_both()
INFO:methylize.helpers:loaded data (485512, 14) from 1 pickled files (0.159s)
INFO:methylize.helpers:meta.Sample_IDs match data.index (OK)





Or if you are running in a notebook, specify the path:

import methylcheck
data, meta = methylcheck.load_both('<path_to...>/GSE105018')





This also validates both files, and ensures that the Sample_ID column in meta DataFrame aligns with the column names in the data DataFrame.
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Differentially methylated regions (DMR) in methylize

Adopted from the ``combined-pvalues`` package by Brend Pedersen et al, 2013: Comb-p: software for combining, analyzing, grouping and correcting spatially correlated P-values doi: 10.1093/bioinformatics/bts545 [https://pubmed.ncbi.nlm.nih.gov/22954632/]


What are Differentially methylated regions (DMRs)?

Genomic regions where DNA methylation levels differ between two groups of samples. DNA methylation is associated with cell differentiation, regulation, and proliferation, so these regions indicate that nearby genes may be involved in transcription regulation. There are several different types of DMRs. These include:


	tissue-specific DMR (tDMR),


	cancer-specific DMR (cDMR),


	development stages (dDMRs),


	reprogramming-specific DMR (rDMR),


	allele-specific DMR (AMR),


	aging-specific DMR (aDMR).






How to run DMR

First, assuming you have processed data using methylprep, use methylize to convert a dataframe of beta or M-values into differentially-methylated-probe (DMP) statistics, using methylize.diff_meth_pos. You will need to provide the data along with a list of sample labels for how to separate the data into two (treatment / control) groups or more groups (levels of a phenotypic characteristic, such as age or BMI):

meth_data = pd.read_pickle('beta_values.pkl')
phenotypes = ["fetal","fetal","fetal","adult","adult","adult"]
test_results = methylize.diff_meth_pos(meth_data, phenotypes)





phenotypes can be a list, numpy array, or pandas Series (Anything list-like). The results will be a dataframe with p-values, a measure of the the likelihood that each probe is significantly different between the phenotypic groups. The lower the p-value, the more likely it is that groups differ:

IlmnID                       Coefficient  StandardError        PValue  95%CI_lower  95%CI_upper  Rsquared  FDR_QValue
cg04680738_II_R_C_rep1_EPIC     -0.03175       0.001627  1.171409e-06    -0.992267    -0.992168  0.984496    0.009706
cg18340948_II_R_C_rep1_EPIC      0.10475       0.005297  1.084911e-06     0.992256     0.992570  0.984887    0.009706
cg03681905_II_F_C_rep1_EPIC     -0.04850       0.002141  4.843320e-07    -0.994254    -0.994157  0.988444    0.009706
cg01815889_II_F_C_rep1_EPIC     -0.05075       0.002735  1.579625e-06    -0.991492    -0.991308  0.982875    0.009816
cg05995891_II_R_C_rep1_EPIC     -0.04050       0.002407  2.812417e-06    -0.989670    -0.989474  0.979254    0.013981
...                                  ...            ...           ...          ...          ...       ...         ...
cg05855048_II_R_C_rep1_EPIC      0.00025       0.016362  9.883052e-01    -0.025827     0.038289  0.000039    0.999077
cg23130711_II_R_C_rep1_EPIC      0.00025       0.016530  9.884235e-01    -0.026217     0.038553  0.000038    0.999156
cg10163088_II_F_C_rep1_EPIC     -0.00025       0.017168  9.888530e-01    -0.039573     0.027696  0.000035    0.999550
cg04079257_II_F_C_rep1_EPIC     -0.00025       0.017430  9.890214e-01    -0.039997     0.028300  0.000034    0.999679
cg24902557_II_F_C_rep1_EPIC      0.00025       0.017533  9.890857e-01    -0.028535     0.040163  0.000034    0.999704





The FDR_QValue is the key result. FDR_Q is the “False Discovery Rate Q-value”: The adjustment corrects individual probe p-values for the number of repeated tests (once for each probe on the array).

Next, you take this whole dataframe output from diff_meth_pos and feed it into the DMR function, diff_meth_regions, along with the type of methylation array you are using:

manifest_or_array_type = '450k'
files_created = methylize.diff_meth_regions(stats_results, manifest_or_array_type, prefix='docs/example_data/450k_test/g69')





This will run a while. It compares all of the probes and clusters CpG probes that show a difference together if they
are close to each other in the genome sequence. There are a lot of adjustable parameters you can play with in
this function. Refer to the docs for more details.

When it completes, it returns a list of files that have been saved to disk:

docs/research_notebooks/dmr.acf.txt
docs/research_notebooks/dmr.args.txt
docs/research_notebooks/dmr.fdr.bed.gz
docs/research_notebooks/dmr.manhattan.png
docs/research_notebooks/dmr.regions-p.bed.gz
docs/research_notebooks/dmr.slk.bed.gz
docs/research_notebooks/dmr_regions.csv
docs/research_notebooks/dmr_regions_genes.csv
docs/research_notebooks/dmr_stats.csv
docs/research_notebooks/stats.bed





Most of these are intermediate processing files that might be useful when imported into other tools, but the
main summary file is the one that ends in regions_genes.csv:

chrom  chromStart chromEnd         min_p  ...  z_sidak_p          name      genes distances   descriptions

21     2535657    2535711  6.662000e-12  ...  3.874000e-08  cg06415891  VLDLR-AS1         3   Homo sapiens VLDLR antisense RNA 1 (VLDLR-AS1)...
22     2535842    2535892  2.816000e-04  ...  8.913000e-01  cg12443001      HCG22        16   Homo sapiens HLA complex group 22 (HCG22), ...
25     2577833    2577883  2.048000e-11  ...  1.347000e-07  cg22948959      HLA-C        33   Homo sapiens major histocompatibility compl...
1      876868      876918       0.00303       1.0           cg05475702
1     1514374     1514424      0.003309       1.0           cg00088251





This will reveal clusters of CpG probes that were significantly different and annotate these clusters with one or more
nearby genes using the UCSC Genome Browser database. Note the CSV file column headings: genes, distances, descriptions. In some cases, a single diff-meth-region can align with multiple genes. In that case you will be a comma separated list for these fields. The descriptions will be separated by a pipe “|” symbol. The distances are the number of base-pairs of separation between the start of the CpG probe and the gene coding start sequence. Only rows with significant region p-values will have annotation.

If you pass in the tissue=<your tissue type> argument into the diff_meth_regions function, and that tissue type is one of the 54 that are part of the GTEx (genome expression levels in humans by tissue dataset), this file will also include a column showing the expression levels for any genes that match, so that you can further narrow down the search for relevant genomic interactions within each experiment.

There are a lot of additional corrections that researchers make at this stage, and many of them are beyond the scope of methylsuite, but this function should get you started. And you can export the output from this function into more sophisticated analysis tools.


Gene annotation with UCSC Genome Browser

University of California Santa Cruz maintains a large database of every version of the human genome and its meta data at https://genome.ucsc.edu/cgi-bin/hgTables. You can browse these database tables.

[image: ]
 [https://raw.githubusercontent.com/FoxoTech/methylize/feature/master/docs/source/Genome-Browser-UCSC-display.png]If you are using the latest genome build (hg38), diff_meth_regions will annotate your database using the refGene table. It also (partially) supports the knownGene and ncbiRefSeq tables, if you want to use those. This is useful for identifying genes that are
nearby your regions of interest, and noting the tissue specificity of those genes, in exploring your data.






          

      

      

    

  

    
      
          
            
  


Methylize Walkthrough


[1]:





#Install joblib module for parallelization
import sys
!conda install --yes --prefix {sys.prefix} joblib













Collecting package metadata (current_repodata.json): done
Solving environment: done

# All requested packages already installed.








[2]:





import methylize
import methylcheck
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.stats.multitest import multipletests








Differentially Methylated Position Analysis with Binary Phenotypes

DMPs are probes where methylation levels differ between two groups of samples, while DMRs are genomic regions where DNA methylation levels differ between two groups of samples.

Beta or m-values can be used, but the format needs to be samples as rows and probes as columns.


[3]:





betas, meta = methylcheck.load_both('../data/asthma') #load in the beta values and metadata
betas = betas.T
print(meta.shape)
meta.head()













INFO:methylcheck.load_processed:Found several meta_data files; attempting to match each with its respective beta_values files in same folders.
WARNING:methylcheck.load_processed:Columns in sample sheet meta data files does not match for these files and cannot be combined:['../data/asthma/sample_sheet_meta_data.pkl', '../data/asthma/GPL13534/GSE157651_GPL13534_meta_data.pkl']
INFO:methylcheck.load_processed:Multiple meta_data found. Only loading the first file.
INFO:methylcheck.load_processed:Loading 40 samples.
Files: 100%|██████████| 1/1 [00:00<00:00,  8.94it/s]
INFO:methylcheck.load_processed:loaded data (485512, 40) from 1 pickled files (0.118s)
INFO:methylcheck.load_processed:Transposed data and reordered meta_data so sample ordering matches.
INFO:methylcheck.load_processed:meta.Sample_IDs match data.index (OK)












(40, 19)







[3]:
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Example: Differentially methylated regions – GSE69852


	Using GEO dataset GSE69852 (6 samples, 450k)


	Title: Patterns of DNA methylation in human fetal and adult liver


	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE69852


	We demonstrate a basic (beta_values + meta_data) –> DMP –> DMR calculation.




Claims in the paper: - Nearly half (42%) of the CpGs in human liver show a significant difference in methylation comparing fetal and adult samples. - 69% of the significant sites differed in their mean methylation beta value by ≤0.2.

Note on phenotype: The original meta data had ages of samples in different units (e.g. 55yr, 21wk) so we manually converted these to a single measurement (converted_age, float, years) so that linear regression could run. Alternatively, you could treat the two groups (55-56 years vs 20-22 weeks) as a phenotype with two groups (1 and 0) and apply logistic regression.


[1]:





import methylize as m
import pandas as pd
from pathlib import Path
df = pd.read_pickle(Path('data/GSE69852_beta_values.pkl'))
meta = pd.read_pickle(Path('data/GSE69852_GPL13534_meta_data.pkl'))








[2]:





res = m.diff_meth_pos(df.sample(100000), meta['converted_age'])
m.manhattan_plot(res, '450k')
bed = m.diff_meth_regions(res, '450k', prefix='data', plot=True)













INFO:methylize.diff_meth_pos:Converted your beta values into M-values; (6, 100000)






















8 NaNs dropped











[image: ../_images/docs_example-GSE69852-DMP-DMR_2_3.png]










INFO:methylprep.files.manifests:Reading manifest file: HumanMethylation450k_15017482_v3.csv
INFO:methylprep.files.manifests:Reading manifest file: HumanMethylation450k_15017482_v3.csv
Calculating ACF out to: 367
with 14 lags: [1, 31, 61, 91, 121, 151, 181, 211, 241, 271, 301, 331, 361, 391]
4873754 bases used as coverage for sidak correction
INFO:methylize.diff_meth_regions:wrote: data.regions-p.bed.gz, (regions with corrected-p < 0.05: 0)











[image: ../_images/docs_example-GSE69852-DMP-DMR_2_5.png]










INFO:methylize.genome_browser:Loaded 24371 CpG regions from data_regions.csv.
INFO:methylize.genome_browser:Using cached `refGene`: /Users/mmaxmeister/methylize/methylize/data/refGene.pkl with (135634) genes
Mapping genes: 100%|██████████| 135634/135634 [00:59<00:00, 2277.89it/s]
INFO:methylize.genome_browser:Wrote data_regions_genes.csv






One would interpret the DMR plot to indicate that there were no significantly different methylated regions. Note, this example only ran 100000 of the 485,512 probes.



All data, logistic regression


[3]:





result = m.diff_meth_pos(df, meta['description'])
m.manhattan_plot(result, '450k')
bed_files = m.diff_meth_regions(result, '450k', prefix='data', plot=True)













INFO:methylize.diff_meth_pos:Converted your beta values into M-values; (6, 485512)
INFO:methylize.diff_meth_pos:Logistic regression: Phenotype (Normal Adult liver) was assigned to 0 and (Normal Fetal Liver) was assigned to 1.






















218806 probes failed the logistic regression analysis due to perfect separation and could not be included in the final results.
13209 probes failed the logistic regression analysis due to LinearAlgebra error and could not be included in the final results.
148 probes failed the logistic regression analysis due to other unexplained reasons and could not be included in the final results.
Linear Algebra and Perfect Separation errors occur when the dataset is (a) too small to observe
events with low probabilities, or has (b) too many covariates in the model, leading to individual cell
sizes that are too small. Singular Matrix Errors occur when there is no variance in the predictors
(probe values and covariates).
27 NaNs dropped











[image: ../_images/docs_example-GSE69852-DMP-DMR_5_3.png]










INFO:methylprep.files.manifests:Reading manifest file: HumanMethylation450k_15017482_v3.csv
INFO:methylprep.files.manifests:Reading manifest file: HumanMethylation450k_15017482_v3.csv
Calculating ACF out to: 50
with 3  lags: [1, 31, 61]
11192348 bases used as coverage for sidak correction
INFO:methylize.diff_meth_regions:wrote: data.regions-p.bed.gz, (regions with corrected-p < 0.05: 16)











[image: ../_images/docs_example-GSE69852-DMP-DMR_5_5.png]










INFO:methylize.genome_browser:Loaded 17 CpG regions from data_regions.csv.
INFO:methylize.genome_browser:Using cached `refGene`: /Users/mmaxmeister/methylize/methylize/data/refGene.pkl with (135634) genes
Mapping genes: 100%|██████████| 135634/135634 [00:56<00:00, 2381.53it/s]
INFO:methylize.genome_browser:Wrote data_regions_genes.csv







[4]:





bed_files








[4]:







['data.args.txt',
 'data.acf.txt',
 'data.fdr.bed.gz',
 'data.slk.bed.gz',
 'data.regions-p.bed.gz',
 'data_regions.csv',
 'data_stats.csv',
 'data_regions_genes.csv',
 'data_dmp_stats.bed']







[5]:





bed = pd.read_csv('data.regions-p.bed.gz', sep='\t')
bed








[5]:
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API Reference







	methylize.diff_meth_pos(meth_data, pheno_data)

	This function searches for individual differentially methylated positions/probes (DMPs) by regressing the methylation M-value for each sample at a given genomic location against the phenotype data for those samples.



	methylize.diff_meth_regions(stats, …)

	Calculates and annotates diffentially methylated regions (DMR) using the combined-pvalues pipeline and returns list of output files.



	methylize.fetch_genes([dmr_regions_file, …])

	find genes that are adjacent to significantly different CpG regions provided.



	methylize.manhattan_plot(stats_results, …)

	In EWAS Manhattan plots, epigenomic probe locations are displayed along the X-axis, with the negative logarithm of the association P-value for each single nucleotide polymorphism (SNP) displayed on the Y-axis, meaning that each dot on the Manhattan plot signifies a SNP.



	methylize.volcano_plot(stats_results, **kwargs)

	This function writes the pandas DataFrame output of diff_meth_pos() to a CSV file named by the user.



	methylize.helpers.to_BED(stats, …[, save, …])

	Converts & exports manifest and probe p-value dataframe to BED format.







differentially methylated positions


	
methylize.diff_meth_pos.diff_meth_pos(meth_data, pheno_data, regression_method=None, impute='delete', **kwargs)

	This function searches for individual differentially methylated positions/probes
(DMPs) by regressing the methylation M-value for each sample at a given
genomic location against the phenotype data for those samples.

Phenotypes can be provided as a list of string-based or integer binary data
or as numeric continuous data.

Input Parameters:



	meth_data:

	A pandas dataframe of methylation array data (as M-values)
where each column corresponds to a CpG site probe and each
row corresponds to a sample. IF a dataframe of beta-values is supplied instead,
this function will detect this and convert to M-values before proceeding.



	pheno_data:

	A list or one dimensional numpy array of phenotypes for each sample row in meth_data.
Binary phenotypes can be presented as a list/array
of zeroes and ones or as a list/array of strings made up
of two unique words (i.e. “control” and “cancer”).


	linear regression requires a measurement for the phenotype


	note: methylprep creates a sample_sheet_meta_data.pkl file containing the phenotype




data for this input. You just need to load it and specify which column to be used as the pheno_data.
- If pheno_data is a pandas DataFrame, you must specify a column and may optionally
specify covariates from the other columns in the DataFrame. Numpy matrices are NOT supported.



	column:

	
	If pheno_data is a DataFrame, column=’label’ will select one series to be used as the phenotype data.






	covariates: (default None) use to define a more complex model for logistic regression.

	
	if pheno_data is not a DataFrame, covariates will be ignored.


	if pheno_data is a DataFrame, and column is specified, and covariates is None, it will ignore other columns in pheno_data.


	if covariates is a list of strings, only these column names will be used as the covariate data from pheno_data.


	If covariates is set to True, then all other columns will be treated as covariates in logistic regression.






	regression_method: (logistic | linear)

	
	Either the string “logistic” or the string “linear”




depending on the phenotype data available.
- Phenotypes with only two options (e.g. “control” and “cancer”) can be analyzed with a logistic regression
- Continuous numeric phenotypes (e.g. age) are required to run a linear regression analysis.
- Default: auto-determine, using the data types found in pheno_data.
If it is numeric with more than 2 different labels, use “linear.”



	impute:

	Because methylprep output contains missing values by default, this function requires user to either delete or impute missing values.


	Default: ‘delete’ probes if ANY samples have missing data for that probe.


	True or ‘auto’: if <30 samples, deletes rows; if >=30 samples, uses average.


	False: don’t impute and throw an error if NaNs present


	‘average’ - use the average of probe values in this batch


	‘delete’ - drop probes if NaNs are present in any sample


	‘fast’ - use adjacent sample probe value instead of average (much faster but less precise)






	alpha: float

	Default is 0.05 for all tests where it applies.



	fwer: float

	Set the familywise error rate (FWER). Default is 0.05, meaning that we expect 5% of all significant differences to be false positives. 0.1 (10%) is a more conservative convention for FWER.



	q_cutoff:

	
	Select a cutoff value (< 1.0) to return filtered results.




Only those DMPs that meet a particular significance threshold (e.g. 0.1) will be retained.
Reported q-values are p-values corrected according to the model’s false discovery
rate (FDR).
- Default: 1 – returns all DMPs regardless of significance.



	export:

	
	default: False


	if True or ‘csv’, saves a csv file with data


	if ‘pkl’, saves a pickle file of the results as a dataframe.


	Use q_cutoff to limit what gets saved to only significant results.




By default, q_cutoff == 1 and this means everything is saved/reported/exported.



	filename:

	
	specify a filename for the exported file.




By default, if not specified, filename will be DMP_<number of probes in file>_<number of samples processed>_<current_date>.<pkl|csv>



	max_workers:

	(=INT) By default, this will parallelize probe processing, using all available cores.
During testing, or when running in a virtual environment like circleci or docker or lambda, the number of available cores
is fewer than the system’s reported CPU cores, and it breaks. Use this to limit the available cores
to some arbitrary number for testing or containerized-usage.



	debug:

	Default: False – True turns on extra messages and runs the ‘solver’ in serial mode,
disabling parallel processing of probes. This is slower but provides more detail for debugging code.



	solver:

	You can force it to use a different implementation of regression, for debugging.
Options include:


	‘statsmodels_OLS’


	‘linregress’ # from scipy


	[logit_DMP() is the default, based on statsmodels.api.Logit()]


	‘statsmodels_GLM’ # for logistic regression











Returns:


A pandas dataframe of regression statistics with a row for each probe analyzed
and columns listing the individual probe’s regression statistics of:



	regression coefficient


	lower limit of the coefficient’s 95% confidence interval


	upper limit of the coefficient’s 95% confidence interval


	standard error


	p-value (phenotype group A vs B - likelihood that the difference is significant for this probe/location)


	FDR_QValue: p-values corrected for multiple comparisons using the Benjamini-Hochberg FDR method







The rows are sorted by q-value in ascending order to list the most significant
probes first. If q_cutoff is specified, only probes with significant q-values
less than the cutoff will be returned in the dataframe.





Note


	If you get a RuntimeError: main thread is not in main loop error running

	diff_meth_pos, add debug=True to your function inputs. This error occurs
in some command line environments when running this function repeatedly, and
the parallel processing steps do not all close. Using debug mode forces it
to analyze the probes serially, not parallel. It is a little slower but will
always run without error under these conditions.



	If Progress Bar Missing:

	if you don’t see a progress bar in your jupyterlab notebook, try this:
- conda install -c conda-forge nodejs
- jupyter labextension install @jupyter-widgets/jupyterlab-manager








Todo

shrink_var feature: variance shrinkage / squeeze variance using Bayes posterior means.
Variance shrinkage is recommended when analyzing small datasets (n < 10).
Paper ref: http://www.uvm.edu/~rsingle/JournalClub/papers/Smyth-SAGMB-2004_eBayes+microarray.pdf
[NOT IMPLEMENTED YET]








	
methylize.diff_meth_pos.legacy_OLS(probe_data, phenotypes, alpha=0.05)

	to use this, specify “statsmodels_OLS” in kwargs to diff_meth_pos()
– this method gives the same result as the scipy.linregress method when tested in version 1.0.0






	
methylize.diff_meth_pos.linear_DMP_regression(probe_data, phenotypes, alpha=0.05)

	This function performs a linear regression on a single probe’s worth of methylation
data (in the form of beta or M-values). It is called by the diff_meth_pos().

Inputs and Parameters:



	probe_data:

	A pandas Series for a single probe with a methylation M-value/beta-value
for each sample in the analysis. The Series name corresponds
to the probe ID, and the Series is extracted from the meth_data
DataFrame through a parallellized loop in diff_meth_pos().



	phenotypes:

	A numpy array of numeric phenotypes with one phenotype per
sample (so it must be the same length as probe_data). This is
the same object as the pheno_data input to diff_meth_pos() after
it has been checked for data type and converted to the
numpy array pheno_data_array.








Returns:


A pandas Series of regression statistics for the single probe analyzed.
The columns of regression statistics are as follows:



	regression coefficient (linregress pearson’s ‘r’)


	lower limit of the coefficient’s 95% confidence interval


	upper limit of the coefficient’s 95% confidence interval


	standard error


	p-value















	
methylize.diff_meth_pos.logistic_DMP_regression(probe_data, phenotypes, covariate_data=None, debug=False)

	
	Runs parallelized.


	TESTED, and gives almost the same values as logit_DMP() (2022-02-25)


	This function performs a logistic regression on a single probe’s worth of methylation




data (in the form of beta/M-values). It is called by the diff_meth_pos().

Inputs and Parameters:



	probe_data:

	A pandas Series for a single probe with a methylation M-value or beta_value
for each sample in the analysis. The Series name corresponds
to the probe ID, and the Series is extracted from the meth_data
DataFrame through a parallellized loop in diff_meth_pos().



	phenotypes:

	A numpy array of binary phenotypes with one phenotype per
sample (so it must be the same length as probe_data). This is
the same object as the pheno_data input to diff_meth_pos() after
it has been checked for data type and converted to the
numpy array pheno_data_binary.








Returns:


A pandas Series of regression statistics for the single probe analyzed.
The columns of regression statistics are as follows:



	regression coefficient


	lower limit of the coefficient’s 95% confidence interval


	upper limit of the coefficient’s 95% confidence interval


	standard error


	p-value







If the logistic regression was unsuccessful in fitting to the data due
to a Perfect Separation Error (as may be the case with small sample sizes)
or a Linear Algebra Error, the exception will be caught and the probe_stats_row
output will contain dummy values to flag the error. Perfect Separation Errors
are coded with the value -999 and Linear Algebra Errors are coded with value
-995. These rows are processed and removed in the next step of diff_meth_pos() to
prevent them from interfering with the final analysis and p-value correction
while printing a list of the unsuccessful probes to alert the user to the issues.









	
methylize.diff_meth_pos.logit_DMP(probe_data, phenotypes, covariate_data=None, debug=False)

	DEFAULT method, because tested and works.
uses statsmodels.api.Logit
pass in a Series for probe data without the constant added

fold_change is log2( (pheno1.mean / pheno0.mean) )

each covariate will be normalized (to 0…1 range) before running DMP.






	
methylize.diff_meth_pos.manhattan_plot(stats_results, array_type, **kwargs)

	In EWAS Manhattan plots, epigenomic probe locations are displayed along the X-axis,
with the negative logarithm of the association P-value for each single nucleotide polymorphism
(SNP) displayed on the Y-axis, meaning that each dot on the Manhattan plot signifies a SNP.
Because the strongest associations have the smallest P-values (e.g., 10−15),
their negative logarithms will be the greatest (e.g., 15).



	genomic coordinates along chromosomes vs epigenetic probe locations along chromosomes


	p-values are for the probe value associations, using linear or logistic regression,




between phenotype A and B.





Hints of hidden heritability in GWAS. Nature 2010. (https://www.ncbi.nlm.nih.gov/pubmed/20581876)






	stats_results:

	a pandas DataFrame containing the stats_results from the linear/logistic regression run on m_values or beta_values
and a pair of sample phenotypes. The DataFrame must contain A “PValue” column. the default output of diff_meth_pos() will work.



	array_type:

	specify the type of array [450k, epic, epic+, mouse, 27k], so that probes can be mapped to chromosomes.










	save:

	specify that it export an image in png format.
By default, the function only displays a plot.



	filename:

	specify an export filename. The default is f”manhattan_<stats>_<timestamp>.png”.










	verbose (True/False) - default is True, verbose messages, if omitted.


	fwer (default 0.1) familywise error rate (fwer) is used to set p-value threshold and the FDR threshold line.


	genome_build – NEW or OLD. Default is NEWest genome_build.


	
	label-prefix – how to refer to chromosomes. By default, it shows numbers like 1 … 22, and X, Y.

	pass in ‘CHR-’ to add a prefix to plot labels, or rename with ‘c’ like: c01 … c22.









There are some preset “override” options for threshold lines on plots:


	
	explore: (default False) include all FOUR significance threshold lines on plot

	(suggestive, significant, bonferroni, and false discovery rate). Useful for data exploration.







	no_thresholds: (default False) set to True to hide all FOUR threshold lines from plot.


	plain: (default False) hide all lines AND don’t label significant probes.


	statsmode: (default False) show the FDR and Bonferroni thresholds, hide the suggestive and genomic significant lines.




These allow you to toggle lines/labels on or off:


	fdr: (default False) draw a threshold line on plot corresponding to the adjusted false discovery rate = 0.05


	bonferroni: (default False) draw the Bonferroni threshold, correcting for multiple comparisons.


	
	suggestive: (default 1e-5) draw the consensus “suggestive significance” theshold at p < 1e-5,

	or set to False to hide.







	
	significant: (default 5e-8) draw the consensus “genomic significance” theshold at p < 5e-8,

	or set to False to hide.







	plot_cutoff_label (default True) label to each dotted line on the plot


	label_sig_probes (default True) labels significant probes showing the greatest difference between groups.




Chart options:


	ymax – default: 50. Set to avoid plotting extremely high -10log(p) values.


	width – figure width – default is 16


	height – figure height – default is 8


	fontsize – figure font size – default 16


	border – plot border –  default is OFF


	palette – specify one of a dozen options for colors of chromosome regions on plot:
[‘default’, ‘Gray’, ‘Pastel1’, ‘Pastel2’, ‘Paired’, ‘Accent’, ‘Dark2’, ‘Set1’, ‘Set2’, ‘Set3’,
‘tab10’, ‘tab20’, ‘tab20b’, ‘tab20c’, ‘Gray2’, ‘Gray3’]












	
methylize.diff_meth_pos.probe_corr_plot(stats, group='sig', colorby='pval')

	
	group=’sig’ is default (using PValue < 0.05)


	group=’chromosome’ also kinda works.


	colorby= pval or FDR; what to use to color the significant probes, if group=’sig’









	
methylize.diff_meth_pos.volcano_plot(stats_results, **kwargs)

	This function writes the pandas DataFrame output of diff_meth_pos() to a CSV file
named by the user. The DataFrame has a row for every successfully tested probe
and columns with different regression statistics as follows:



	regression coefficient


	lower limit of the coefficient’s 95% confidence interval


	upper limit of the coefficient’s 95% confidence interval


	standard error


	p-value


	FDR q-value (p-values corrected for multiple testing using the Benjamini-Hochberg FDR method)







Inputs and Parameters:



	stats_results (required):

	A pandas DataFrame output by the function diff_meth_pos().



	‘alpha’:

	Default: 0.05, The significance level that will be used to highlight the most
significant p-values (or adjusted FDR Q-values) on the plot.



	‘cutoff’:

	the beta-coefficient cutoff | Default: None
format: a list or tuple with two numbers for (min, max) or ‘auto’.
If specified in kwargs, will exclude values within this range of regression coefficients OR fold-change range
from being “significant” and put dotted vertical lines on chart.
‘auto’ will select a beta coefficient range that excludes 95% of results from appearing significant.



	‘adjust’:

	(default False) – if this will adjust the p-value cutoff line for false discovery rate (Benjamini-Hochberg).
Use ‘fwer’ to set the target rate.



	‘fwer’:

	family-wise error rate (default is 0.1) – specify a probability [0 to 1.0] for false discovery rate



	‘data_type_label’:

	What to put on X-axis. Either ‘Fold Change’ (default) or ‘Regression Coefficient’.



	visualization kwargs:

	
	
	palette – color pattern for plot – default is [blue, red, grey]

	other palettes: [‘default’, ‘Gray’, ‘Pastel1’, ‘Pastel2’, ‘Paired’, ‘Accent’, ‘Dark2’, ‘Set1’, ‘Set2’, ‘Set3’, ‘tab10’, ‘tab20’, ‘tab20b’, ‘tab20c’, ‘Gray2’, ‘Gray3’]







	width – figure width – default is 16


	height – figure height – default is 8


	fontsize – figure font size – default 16


	dotsize – figure dot size on chart – default 30


	border – plot border –  default is OFF


	data_type_label – (e.g. Beta Values, M Values) – default is ‘Beta’


	plot_cutoff_label – add label to dotted line on plot – default False






	save:

	specify that it export an image in png format.
By default, the function only displays a plot.



	filename:

	specify an export filename. default is volcano_<current_date>.png.








Returns:


Displays a plot, but does not directly return an object.
The data is color coded and displayed as follows:


	the negative log of adjusted p-values is plotted on the y-axis


	the regression coefficient beta value is plotted on the x-axis


	the significance cutoff level appears as a horizontal gray dashed line


	non-significant points appear in light gray


	significant points with positive correlations (hypermethylated probes)
appear in red


	significant points with negative correlations (hypomethylated probes)
appear in blue













differentially methylated regions


	
methylize.diff_meth_regions.diff_meth_regions(stats, manifest_or_array_type, **kwargs)

	Calculates and annotates diffentially methylated regions (DMR) using the combined-pvalues pipeline and returns list of output files.

comb-p is a command-line tool and a python library that manipulates BED files of possibly irregularly spaced P-values and


	calculates auto-correlation,


	combines adjacent P-values,


	performs false discovery adjustment,


	finds regions of enrichment (i.e. series of adjacent low P-values) and


	assigns significance to those regions.




ref: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3496335/

Input Parameters:



	stats: dataframe

	dataframe output from diff_meth_pos()



	manifest_or_array_type: class instance or string

	pass in the manifest, or the name of the array



	filename:

	filename to prepend to the .BED file created.





creates a <filename>.bed output from diff_meth_pos and to_BED.
genome_build: default ‘NEW’


by default, it uses the NEWer genome build. Each manifest contains two genome builds,
marked “NEW” and “OLD”. To use the OLD build, se this to “OLD”.







Computational Parameters:



	dist: int

	maximum distance from each probe to scan for adjacent peaks (80)



	acf-dist: int

	window-size for smoothing. Default is 1/3 of peak-dist (dist kwarg),



	step: int

	step size for bins in the ACF calculation (50)



	threshold: foat

	Extend regions after seeding if pvalue exceeds this value (default: same as seed)



	seed: float

	minimum size of a genomic region (0.05)



	no_fdr: bool

	don’t use FDR



	genome_control: bool

	correct input pvalues for genome control (inflation factor). This reduces the confounding effects
of population stratitication in EWAS data.








Display/output Paramters:



	verbose: bool – default False

	Display additional processing information on screen.



	plot: bool – default False

	False will suppress the manhattan plot step.



	prefix: str

	prefix that gets appended to all output files (e.g. ‘dmr’ becomes ‘dmr_regions.csv’)



	region_filter_p:

	max adjusted region-level p-value in final output.



	region_filter_n:

	req at least this many probes in a region



	annotate: bool

	annotate with fetch_genes() function that uses UCSC refGene database to add “nearby” genes to
differentially methylated regions in the output CSV. If you want to fine-tune the reference database,
the tolerance of what “nearby” means, and other parameters, set this to false and call methylize.fetch_genes
as a separate step on the ‘…_regions.csv’ output file.



	tissue: str

	if specified, adds additional columns to the annotation output with the expression levels for identified genes
in any/all tissue(s) that match the keyword. (e.g. if your methylation samples are whole blood,
specify tissue=blood) For all 54 tissues, use tissue=all








Returns:



	list

	A list of files created.














Fetch Genes

find genes that are adjacent to significantly different CpG regions provided.

Summary:


fetch_genes() annotates the DMR region output file, using the UCSC Genome Browser database as a reference
as to what genes are nearby. This is an exploratory tool, as there are many versions of the human genome
that map genes to slightly different locations.




fetch_genes() is an EXPLORATORY tool and makes a number of simplicifications:



	the DMR regions file saves one CpG probe name and location, even though clusters of probes may map to
that nearby area.


	it measures the distance from the start position of the one representative probe per region to any nearby
genes, using the `tol`erance parameter as the cutoff. Tolerance is the max number of base pairs of separation
between the probe sequence start and the gene sequence start for it to be considered as a match.


	The default `tol`erance is 250, but that is arbitrary. Increase it to expand the search area, or decrease it
to be more conservative. Remember that Illumina CpG probe sequences are 50 base pairs long, so 100 is nearly
overlapping. 300 or 500 would also be reasonable.


	“Adjacent” in the linear sequence may not necessarily mean that the CpG island is FUNCTIONALLY coupled to the
regulatory or coding region of the nearby protein. DNA superstructure can position regulatory elements near to
a coding region that are far upstream or downstream from the mapped position, and there is no easy way to identify
“adjacent” in this sense.


	Changing the `tol`erance, or the reference database will result major differences in the output, and thus
one’s interpretation of the same data.


	Before interpreting these “associations” you should also consider filtering candidate genes by
specific cell types where they are expressed. You should know the tissue from which your samples originated.
And filter candidate genes to exclude those that are only expressed in your tissue during development,
if your samples are from adults, and vice versa.







Arguments:



	dmr_regions_file:

	pass in the output file DataFrame or FILEPATH from DMR function.
Omit if you specify the sql kwarg instead.



	ref: default is refGene

	use one of possible_tables for lookup:
- ‘refGene’ – 88,819 genes – default table used in comb-b and cruzdb packages.
- ‘knownGene’ – 232,184 genes – pseudo genes too (the “WHere TranscriptType == ‘coding_protein’” clause would work, but these fields are missing from the data returned.)
- ‘ncbiRefSeq’ – 173,733 genes – this table won’t have gene descriptions, because it cannot be joined with the ‘kgXref’ (no shared key).
Additionally, ‘gtexGeneV8’ is used for tissue-expression levels. Pseudogenes are ommited using the “WHERE score > 0” clause in the SQL.



	tol: default 250

	+/- this many base pairs consistutes a gene “related” to a CpG region provided.



	tissue: str

	if specified, adds additional columns to output with the expression levels for identified genes
in any/all tissue(s) that match the keyword. (e.g. if your methylation samples are whole blood,
specify tissue=blood) For all 54 tissues, use tissue=all



	genome_build: (None, NEW, OLD)

	Only the default human genome build, hg38, is currently supported. Even though many other builds are available
in the UCSC database, most tables do not join together in the same way.



	use_cached:

	If True, the first time it downloads a dataset from UCSC Genome Browser, it will save to disk
and use that local copy thereafter. To force it to use the online copy, set to False.



	no_sync:

	methylize ships with a copy of the relevant UCSC gene browser tables, and will auto-update these
every month. If you want to run this function without accessing this database, you can avoid updating
using the no_sync=True kwarg.



	host, user, password, db:

	Internal database connections for UCSC server. You would only need to mess with these of the server domain changes
from the current hardcoded value {HOST}. Necessary for tables to be updated and for tissue annotation.



	sql:

	a DEBUG mode that bypasses the function and directly queries the database for any information the user wants.
Be sure to specify the complete SQL statement, including the ref-table (e.g. refGene or ncbiRefSeq).









Note

This method flushes cache periodically. After 30 days, it deletes cached reference gene tables and re-downloads.





Manhattan Plot

In EWAS Manhattan plots, epigenomic probe locations are displayed along the X-axis,
with the negative logarithm of the association P-value for each single nucleotide polymorphism
(SNP) displayed on the Y-axis, meaning that each dot on the Manhattan plot signifies a SNP.
Because the strongest associations have the smallest P-values (e.g., 10−15),
their negative logarithms will be the greatest (e.g., 15).


GWAS vs EWAS



	genomic coordinates along chromosomes vs epigenetic probe locations along chromosomes


	p-values are for the probe value associations, using linear or logistic regression,




between phenotype A and B.






Ref


Hints of hidden heritability in GWAS. Nature 2010. (https://www.ncbi.nlm.nih.gov/pubmed/20581876)






Required Inputs



	stats_results:

	a pandas DataFrame containing the stats_results from the linear/logistic regression run on m_values or beta_values
and a pair of sample phenotypes. The DataFrame must contain A “PValue” column. the default output of diff_meth_pos() will work.



	array_type:

	specify the type of array [450k, epic, epic+, mouse, 27k], so that probes can be mapped to chromosomes.










output kwargs



	save:

	specify that it export an image in png format.
By default, the function only displays a plot.



	filename:

	specify an export filename. The default is f”manhattan_<stats>_<timestamp>.png”.










visualization kwargs



	verbose (True/False) - default is True, verbose messages, if omitted.


	fwer (default 0.1) familywise error rate (fwer) is used to set p-value threshold and the FDR threshold line.


	genome_build – NEW or OLD. Default is NEWest genome_build.


	
	label-prefix – how to refer to chromosomes. By default, it shows numbers like 1 … 22, and X, Y.

	pass in ‘CHR-’ to add a prefix to plot labels, or rename with ‘c’ like: c01 … c22.









There are some preset “override” options for threshold lines on plots:


	
	explore: (default False) include all FOUR significance threshold lines on plot

	(suggestive, significant, bonferroni, and false discovery rate). Useful for data exploration.







	no_thresholds: (default False) set to True to hide all FOUR threshold lines from plot.


	plain: (default False) hide all lines AND don’t label significant probes.


	statsmode: (default False) show the FDR and Bonferroni thresholds, hide the suggestive and genomic significant lines.




These allow you to toggle lines/labels on or off:


	fdr: (default False) draw a threshold line on plot corresponding to the adjusted false discovery rate = 0.05


	bonferroni: (default False) draw the Bonferroni threshold, correcting for multiple comparisons.


	
	suggestive: (default 1e-5) draw the consensus “suggestive significance” theshold at p < 1e-5,

	or set to False to hide.







	
	significant: (default 5e-8) draw the consensus “genomic significance” theshold at p < 5e-8,

	or set to False to hide.







	plot_cutoff_label (default True) label to each dotted line on the plot


	label_sig_probes (default True) labels significant probes showing the greatest difference between groups.




Chart options:


	ymax – default: 50. Set to avoid plotting extremely high -10log(p) values.


	width – figure width – default is 16


	height – figure height – default is 8


	fontsize – figure font size – default 16


	border – plot border –  default is OFF


	palette – specify one of a dozen options for colors of chromosome regions on plot:
[‘default’, ‘Gray’, ‘Pastel1’, ‘Pastel2’, ‘Paired’, ‘Accent’, ‘Dark2’, ‘Set1’, ‘Set2’, ‘Set3’,
‘tab10’, ‘tab20’, ‘tab20b’, ‘tab20c’, ‘Gray2’, ‘Gray3’]










Volcano Plot

This function writes the pandas DataFrame output of diff_meth_pos() to a CSV file
named by the user. The DataFrame has a row for every successfully tested probe
and columns with different regression statistics as follows:



	regression coefficient


	lower limit of the coefficient’s 95% confidence interval


	upper limit of the coefficient’s 95% confidence interval


	standard error


	p-value


	FDR q-value (p-values corrected for multiple testing using the Benjamini-Hochberg FDR method)







Inputs and Parameters:



	stats_results (required):

	A pandas DataFrame output by the function diff_meth_pos().



	‘alpha’:

	Default: 0.05, The significance level that will be used to highlight the most
significant p-values (or adjusted FDR Q-values) on the plot.



	‘cutoff’:

	the beta-coefficient cutoff | Default: None
format: a list or tuple with two numbers for (min, max) or ‘auto’.
If specified in kwargs, will exclude values within this range of regression coefficients OR fold-change range
from being “significant” and put dotted vertical lines on chart.
‘auto’ will select a beta coefficient range that excludes 95% of results from appearing significant.



	‘adjust’:

	(default False) – if this will adjust the p-value cutoff line for false discovery rate (Benjamini-Hochberg).
Use ‘fwer’ to set the target rate.



	‘fwer’:

	family-wise error rate (default is 0.1) – specify a probability [0 to 1.0] for false discovery rate



	‘data_type_label’:

	What to put on X-axis. Either ‘Fold Change’ (default) or ‘Regression Coefficient’.



	visualization kwargs:

	
	
	palette – color pattern for plot – default is [blue, red, grey]

	other palettes: [‘default’, ‘Gray’, ‘Pastel1’, ‘Pastel2’, ‘Paired’, ‘Accent’, ‘Dark2’, ‘Set1’, ‘Set2’, ‘Set3’, ‘tab10’, ‘tab20’, ‘tab20b’, ‘tab20c’, ‘Gray2’, ‘Gray3’]







	width – figure width – default is 16


	height – figure height – default is 8


	fontsize – figure font size – default 16


	dotsize – figure dot size on chart – default 30


	border – plot border –  default is OFF


	data_type_label – (e.g. Beta Values, M Values) – default is ‘Beta’


	plot_cutoff_label – add label to dotted line on plot – default False






	save:

	specify that it export an image in png format.
By default, the function only displays a plot.



	filename:

	specify an export filename. default is volcano_<current_date>.png.








Returns:


Displays a plot, but does not directly return an object.
The data is color coded and displayed as follows:


	the negative log of adjusted p-values is plotted on the y-axis


	the regression coefficient beta value is plotted on the x-axis


	the significance cutoff level appears as a horizontal gray dashed line


	non-significant points appear in light gray


	significant points with positive correlations (hypermethylated probes)
appear in red


	significant points with negative correlations (hypomethylated probes)
appear in blue









To BED

Converts & exports manifest and probe p-value dataframe to BED format.
* https://en.wikipedia.org/wiki/BED_(file_format)


	BED format: [ chromosome number | start position | end position | p-values]




Where p-values are the output from diff_meth_pos() comparing probes across two or more
groups of samples for genomic differences in methylation.

This output is required for combined-pvalues library to read and annotate manhattan plots
with the nearest Gene(s) for each significant CpG cluster.


	manifest_or_array_type:

	either pass in a Manifest instance from methylprep, or a string that defines which
manifest to load. One of {‘27k’, ‘450k’, ‘epic’, ‘epic+’, ‘mouse’}.



	genome_build:

	pass in ‘OLD’ to use the older genome build for each respective manifest array type.





note: if manifest has probes that aren’t mapped to genome, they are omitted in BED file.

TODO: incorporate STRAND and OLD_STRAND in calculations.

returns a BED formatted dataframe if save is False, or the saved filename if save is True.
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Release History


v1.1.1


	Minor edits to readme and removing methylcheck import, because it is not used anywhere.


	Note: methylprep is only imported for reading Manifest files and handling ArrayType.






v1.1.0


	We found that diff_meth_pos results were not accurate in prior versions and have fixed the regression optimization.


	diff_meth_pos function kwargs changed to provide more flexibility in how the model is optimized.


	Added support for COVARIATES in logistic regression. Provide a dataframe with both the phenotype and covariates, and specify which columns are phenotype or covariates. It will rearrange and normalize to ensure the model works best.


	Use the new ‘solver’ kwarg in diff_meth_pos to specify which form of linear or logistic regression to run. There are two flavors of each, and both give nearly identical results.


	Auto-detects logistic or linear based on input: if non-numeric inputs in phenotype of exactly two values, it assumes logistic.






	Upgraded manhattan and volcano plots with many more options. Default settings should mirror most R EWAS packages now, with a “suggestive” and “significant” threshold line on manhattan plots.


	Unit test coverage added.






v1.0.1


	Fixed option to use Differentially methylated regions (DMR) via cached local copy of UCSC database (via fetch_genes) without using the internet. Previously, it would still contact the internet database even if user told it not to.


	Added testing via github actions, and increased speed


	updated documentation






v1.0.0


	fixed bug in fetch_genes() from UCSC browser; function will now accept either the filepath or the DMR dataframe output.






v0.9.9


	Added a differentially methylated regions (DMR) functions that takes the output of the diff_meth_pos (DMP) function.


	DMP maps differences to chromosomes; DMR maps differences to specific genomic locii, and requires more processing.


	upgraded methylprep manifests to support both old and new genomic build mappings for all array types.
In general, you can supply a keyword argument (genome_build='OLD') to change from the new build back to the old one.


	Illumina 27k arrays are still not supported, but mouse, epic, epic+, and 450k ARE supported.
(Genome annotation won’t work with mouse array, only human builds.)


	DMP integrates the combined-pvalues package (https://pubmed.ncbi.nlm.nih.gov/22954632/)


	DMP integrates with UCSC Genome (refGene) and annotates the genes near CpG regions.


	Annotation includes column(s) showing the   tissue specific expression levels of relevant genes (e.g. filter=blood)
this function is also available with extended options as methylize.filter_genes()


	provides output BED and CSV files for each export into other genomic analysis tools






	methylize.to_BED will convert the diff_meth_pos() stats output into a standard BED file
(a tab separated CSV format with standardized, ordered column names)






v0.9.8


	fixed methylize diff_meth_pos linear regression. upgraded features too


	Fixed bug in diff_meth_pos using linear regression - was not calculating p-values correctly.
Switched from statsmodels OLS to scipy linregress to fix, but you can use either one with kwargs.
They appear to give exactly the same results now after testing.


	The “CHR-” prefix is omitted from manhattan plots by default now


	dotted manhattan sig line is Bonferoni corrected (pass in post_test=None to leave uncorrected)


	added a probe_corr_plot() undocumented function, a scatterplot of probe confidence intervals vs pvalue


	sorts probes by MAPINFO (chromosome location) instead of FDR_QValue on manhattan plots now






	Support for including/excluding sex chromosomes from DMP (probe2chr map)






v0.9.5


	Added imputation to diff_meth_pos() function, because methylprep output contains missing values
by default and cannot be used in this function.


	This can be disabled, and it will throw a warning if NaNs present.


	Default is to delete probes that have any missing values before running analysis.


	if ‘auto’: If there are less than 30 samples, it will delete the missing rows.


	if ‘auto’: If there are >= 30 samples in the batch analyzed, it will replace NaNs with the
average value for that probe across all samples.


	User may override the default using: True (‘auto’), ‘delete’, ‘average’, and False (disable)


	diff_meth_pos() now support mouse array, with multiple copies of the same probe names.










v0.9.4


	Fixed bug where methylize could not find a data file in path, causing ImportError


	Improved diff_meth_pos() function and added support for all array types. Now user must
specify the array_type when calling the function, as the input data are stats, not probe betas,
so it cannot infer the array type from this information.








          

      

      

    

  

  
    
    Python Module Index
    

    

 


  

    
      
          
            

   Python Module Index


   
   m
   


   
     		 	

     		
       m	

     
       	[image: -]
       	
       methylize	
       

     
       	
       	   
       methylize.diff_meth_pos	
       

     
       	
       	   
       methylize.diff_meth_regions	
       

     
       	
       	   
       methylize.fetch_genes	
       

     
       	
       	   
       methylize.manhattan_plot	
       

     
       	
       	   
       methylize.to_BED	
       

     
       	
       	   
       methylize.volcano_plot	
       

   



          

      

      

    

  

  
    
    Index
    

    
 
  

    
      
          
            

Index



 D
 | L
 | M
 | P
 | V
 


D


  	
      	diff_meth_pos() (in module methylize.diff_meth_pos)
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      	legacy_OLS() (in module methylize.diff_meth_pos)
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methylize is a python package for analyzing output from Illumina methylation arrays. It complements methylprep and methylcheck and provides methods for computing differentially methylated probes and regions, and annotating these regions with the UCSC Genome Browser.  View on ReadTheDocs. [https://life-epigenetics-methylize.readthedocs-hosted.com/en/latest/]

[image: tests]
 [https://github.com/FoxoTech/methylize/actions/workflows/ci.yml][image: Readthedocs]
 [https://life-epigenetics-methylize.readthedocs-hosted.com/en/latest/][image: License: MIT]
 [https://opensource.org/licenses/MIT][image: CircleCI]
 [https://circleci.com/gh/FoxoTech/methylize/tree/master][image: Codacy Badge]
 [https://www.codacy.com/gh/FoxoTech/methylize/dashboard?utm_source=github.com&amp;utm_medium=referral&amp;utm_content=FOXOBioScience/methylize&amp;utm_campaign=Badge_Grade][image: Coverage Status]
 [https://coveralls.io/github/FoxoTech/methylize?branch=master][image: PYPI-Downloads]
 [https://img.shields.io/pypi/dm/methylize.svg?label=pypi%20downloads&logo=PyPI&logoColor=white][image: codecov]
 [https://codecov.io/gh/FoxoTech/methylize]
methylize is part of the methylsuite

methylize is part of the methylsuite [https://pypi.org/project/methylsuite/] of python packages that provide functions to analyze DNA methylation data from Illumina’s Infinium arrays (27k, 450k, and EPIC, as well as mouse arrays). This package is focused on analysis of processed methylation data, such as EWAS using Manhattan and Volcano plots.
methylize functions are designed to work with a minimum of knowledge and specification required. But you can always override the “smart” defaults with custom settings if the default settings don’t work for your data. The entire methylsuite is designed in this format: to offer ease of use while still maintaining flexibility for customization as needed.



Methylsuite package components

You should install all three components, as they work together. The parts include:


	methylprep: for processing idat files or downloading GEO datasets from NIH. Processing steps include


	infer type-I channel switch


	NOOB (normal-exponential convolution on out-of-band probe data)


	poobah (p-value with out-of-band array hybridization, for filtering low signal-to-noise probes)


	qualityMask (to exclude historically less reliable probes)


	nonlinear dye bias correction (AKA signal quantile normalization between red/green channels across a sample)


	calculate beta-value, m-value, or copy-number matrix


	large batch memory management, by splitting it up into smaller batches during processing






	methylcheck: (this package) for quality control (QC) and analysis, including


	functions for filtering out unreliable probes, based on the published literature


	Note that methylprep process will exclude a set of unreliable probes by default. You can disable that using the –no_quality_mask option from CLI.






	sample outlier detection


	array level QC plots, based on Genome Studio functions


	a python clone of Illumina’s Bead Array Controls Reporter software (QC)


	data visualization functions based on seaborn and matplotlib graphic libraries.


	predict sex of human samples from probes


	interactive method for assigning samples to groups, based on array data, in a Jupyter notebook






	methylize provides more analysis and interpretation functions


	differentially methylated probe statistics (between treatment and control samples)


	volcano plots (which probes are the most different?)


	manhattan plots (where in genome are the differences?)










Table of Contents


	Differentially methylated position (DMP) regression, detection and visualation


	Logistic Regression


	Linear Regression


	Manhattan Plot


	Volcano plot






	Differentially methylated regions


	Gene annotation with the UCSC Human Genome Browser










Installation

pip3 install methylize





Installation will also install the other parts of the methylsuite (methylprep and methylcheck) if they are not already installed.


	If progress bar is missing:

	If you don’t see a progress bar in your jupyterlab notebook, try this:





- conda install -c conda-forge nodejs
- jupyter labextension install @jupyter-widgets/jupyterlab-manager







Methylize Package

The methylize package contains both high-level APIs for processing data from local files and low-level functionality allowing you to analyze your data AFTER running methylprep and methylcheck. For greatest usability, import methylize into a Jupyer Notebook along with your processed sample data (a DataFrame of beta values or m-values and a separate DataFrame containing meta data about the samples).

Methylize allows you to run linear or logistic regression on all probes and identify points of interest in the methylome where DNA is differentially modified. Then you can use these regression results to create volcano plots and manhattan plots.


Sample Manhattan Plot

[image: Manhattan Plot]
 [https://github.com/FoxoTech/methylize/blob/master/docs/manhattan_example.png?raw=true][image: Manhattan Plot (alternate coloring)]
 [https://github.com/FoxoTech/methylize/blob/master/docs/manhattan_example2.png?raw=true]

Sample Volcano Plot

[image: Volcano Plot]
 [https://github.com/FoxoTech/methylize/blob/master/docs/volcano_example.png?raw=true]Customizable: Plot size, color palette, and cutoff p-value lines can be set by the user.
Exporting: You can export all probe statistics, or just the significant probes as CSV or python pickled DataFrame.




Differentially methylated position/probe (DMP) detection

The diff_meth_pos(meth_data, phenotypes) function searches for individual differentially methylated positions/probes
(DMPs) by regressing methylation beta values or M-values for each sample at a given
genomic location against the phenotype data for those samples.


Phenotypes

Can be provided as

- a list of strings,
- integer binary data,
- numeric continuous data
- pandas Series, DataFrame or numpy array





Only 2 phenotypes are allowed with logistic regression. Use Linear regression with numeric (measurement) phenotypes like age or time. You can pass in the GEO meta DataFrame associated with a dataset along with column=<columnname> kwarg. The order of the items in the phenotype should match the order of samples in the beta values or M-values.

Covariates are also supported for logistic (but not linear) regression. Pass in covariates=True to treat all other columns in a phenotype DataFrame as covariates, or pass in a list of column names to specify specific parts of the DataFrame. Note that supplying too many covariates for small sample sizes will lead to most probes failing with Linear Algebra or Perfect Separation errors.

For details on all of the other adjustable input parameters, refer to the API for diff_meth_pos()



Returns

A pandas dataframe of regression statistics with one row for each probe
and these columns:

- `Coefficient`: regression coefficient
- `StandardError`: standard error
- `95%CI_lower`: lower limit of the coefficient's 95% confidence interval
- `95%CI_upper`: upper limit of the coefficient's 95% confidence interval
- `PValue`: p-value: phenotype group A vs B - likelihood that the difference is significant for this probe/location
- `Rsquared`: proportion (0 to 1) of probe variance explained by your phenotype. Linear Regression Only.
- `FDR_QValue`: p-values corrected for multiple comparisons using the Benjamini-Hochberg FDR method. The False Discovery Rate (FDR) corrected p-values will remain comparable, regardless of the number of additional comparisons (probes) you include.

If a `q_cutoff` is specified, only probes with significant q-values less than the cutoff will be returned in the DataFrame.








Differentially methylated regions (DMR)

Pass in your diff_meth_pos (DMP) stats results DataFrame as input, and it will calculate and annotate differentially methylated regions (DMR) using the combined-pvalues pipeline. This function returns list of output files.

- calculates auto-correlation
- combines adjacent p-values
- performs false discovery rate (FDR) adjustment
- finds regions of enrichment (i.e. series of adjacent low p-values)
- assigns significance to those regions
- annotates significant regions with possibly relevant nearby Genes,
  using the UCSC Genome Browser Database
- annotates candidate genes with expression levels for the sample tissue type,
  if user specifies the sample tissue type.
- returns everything in a CSV that can be imported into other Genomic analysis packages.





For more details on customizing the inputs and outputs, see API for the diff_meth_regions(stats, array_type) function.



Loading processed data

Assuming you previously used methylprep to process a data set like this:

python -m methylprep -v process -d GSE130030 --betas





This creates two files, beta_values.pkl and sample_sheet_meta_data.pkl. You can load both in methylize like this:

Navigate to the folder where methylrep saved its processed files, and start a python interpreter:

>>>import methylcheck
>>>data, meta = methylcheck.load_both()
INFO:methylize.helpers:loaded data (485512, 14) from 1 pickled files (0.159s)
INFO:methylize.helpers:meta.Sample_IDs match data.index (OK)





Or if you are running in a notebook, specify the path:

import methylcheck
data, meta = methylcheck.load_both('<path_to...>/GSE105018')





This also validates both files, and ensures that the Sample_ID column in meta DataFrame aligns with the column names in the data DataFrame.
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Python-equivalent commands for bumphunting


[1]:





import csv ##module required so far just to read CSV data files output by minfi processing in R
import pandas as pd
import numpy as np
import math








[2]:





##Read in the minfi processed output matrices needed to run bumphunter code
betaVals = pd.read_csv("Sample_Beta_value_matrix_quantilePreprocessed.csv",index_col=0)
phenoDesign = pd.read_csv("Sample_phenotype_design_matrix.csv")
probePositions = pd.read_csv("Sample_probe_genomic_positions.csv",index_col=0)








[3]:





probePositions.head()








[3]:
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Searching for DMRs with BioConductor’s bumphunter

This notebook searches for Differentially Methylated Regions (DMRs) along the genome using 450k array data and the bumphunter function from Bioconductor [https://bioconductor.org/packages/release/bioc/html/bumphunter.html]. The packages statistical methods are outlined in the authors’ 2012 publication [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3304533/]. The purposes of this notebook are to 1) adjust the parameters of the bumphunter function and examine how the identified DMRs change
in response and 2) create benchmark results against which to compare the performance of the forthcoming python version of the package.


Load minfi package from which bumphunter function will be called


[1]:





library(minfi)
wd_path <- getwd()
##filepath to folder of sample liver 450k array data
basepath <- paste(wd_path,"GSE69852_copy",sep="/")
basepath













Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    anyDuplicated, append, as.data.frame, basename, cbind, colMeans,
    colnames, colSums, dirname, do.call, duplicated, eval, evalq,
    Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply,
    lengths, Map, mapply, match, mget, order, paste, pmax, pmax.int,
    pmin, pmin.int, Position, rank, rbind, Reduce, rowMeans, rownames,
    rowSums, sapply, setdiff, sort, table, tapply, union, unique,
    unsplit, which, which.max, which.min

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:base':

    expand.grid

Loading required package: IRanges

Attaching package: 'IRanges'

The following object is masked from 'package:grDevices':

    windows

Loading required package: GenomeInfoDb
Loading required package: SummarizedExperiment
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.

Loading required package: DelayedArray
Loading required package: matrixStats

Attaching package: 'matrixStats'

The following objects are masked from 'package:Biobase':

    anyMissing, rowMedians

Loading required package: BiocParallel

Attaching package: 'DelayedArray'

The following objects are masked from 'package:matrixStats':

    colMaxs, colMins, colRanges, rowMaxs, rowMins, rowRanges

The following objects are masked from 'package:base':

    aperm, apply

Loading required package: Biostrings
Loading required package: XVector

Attaching package: 'Biostrings'

The following object is masked from 'package:DelayedArray':

    type

The following object is masked from 'package:base':

    strsplit

Loading required package: bumphunter
Loading required package: foreach
Loading required package: iterators
Loading required package: locfit
locfit 1.5-9.1   2013-03-22
Setting options('download.file.method.GEOquery'='auto')
Setting options('GEOquery.inmemory.gpl'=FALSE)











'C:/Users/Alanna/Documents/Life Epigenetics/BumphunterBenchmarksR/GSE69852_copy'




Read in raw array data and associated sample information

Read in the data from the samplesheet corresponding to these samples. Example data is from Huse et al. 2015 [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654795/] available from GEO under accession number GSE69852 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE69852].

Phenotype data for age and sex were added manually to the sample sheet for this exercise. The adult ages are NOT exact for each individual, but rather represent the average age of the adults who were described as “55 to 62 year olds.”


[2]:





targets <- read.metharray.sheet(basepath)
targets













[read.metharray.sheet] Found the following CSV files:












[1] "C:/Users/Alanna/Documents/Life Epigenetics/BumphunterBenchmarksR/GSE69852_copy/samplesheet.csv"
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Python-equivalent commands for bumphunting


[1]:





#import csv ##module required so far just to read CSV data files output by minfi processing in R
import pandas as pd
import numpy as np
import statsmodels.api as sm








[3]:





##Read in the minfi processed output matrices needed to run bumphunter code
betaVals = pd.read_csv("Sample_Beta_value_matrix_quantilePreprocessed.csv",index_col=0)
phenoDesign = pd.read_csv("Sample_phenotype_design_matrix.csv")
probePositions = pd.read_csv("Sample_probe_genomic_positions.csv",index_col=0)








[4]:





probePositions.head()








[4]:
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Python-equivalent commands for bumphunting


[1]:





#import csv ##module required so far just to read CSV data files output by minfi processing in R
import pandas as pd
import numpy as np
import statsmodels.api as sm








[3]:





##Read in the minfi processed output matrices needed to run bumphunter code
betaVals = pd.read_csv("Sample_Beta_value_matrix_quantilePreprocessed.csv",index_col=0)
phenoDesign = pd.read_csv("Sample_phenotype_design_matrix.csv")
probePositions = pd.read_csv("Sample_probe_genomic_positions.csv",index_col=0)








[4]:





probePositions.head()








[4]:
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[1]:





import pandas as pd
import numpy as np
import methylcheck
import methylize
import matplotlib.pyplot as plt







# load and organize data from GSE156984

ref source: I pasted table 2 from paper into a tab-separated CSV file and load here to compare p-values for selected probes.


[3]:






ref = pd.read_csv('/Users/mmaxmeister/methylize/data/GSE156984/GSE156984_table2.csv', sep='\t')
meta = pd.read_csv('/Volumes/LEGX/GEO/GSE156984/GSE156984_GPL21145_samplesheet.csv')
print("table 1 treatment/control N")
print(meta['source'].value_counts())

# df has 381 columns, with "Detection_Pval","Methylated_Signal", and "Unmethylated_Signal" for each sample.
# ---using methylcheck
# THIS SHOULD WORK, but latest version loses one sample, so doing it manually.
# df = methylcheck.read_geo('/Volumes/LEGX/GEO/GSE156984/GSE156984_STG_Matrix_signal_intensities.txt')

raw = pd.read_csv('/Volumes/LEGX/GEO/GSE156984/GSE156984_STG_Matrix_processed.txt', sep='\t')
usecols = [col for col in raw.columns if 'Detection' not in col]
betas = raw[usecols]

sample_names = [f"{row.split('_')[0]}_{row.split('_')[1]}" for row in raw.columns][::3] #<--- keep every 3rd item
# confirmed: using Counter() that sample_names is complete.
# a lookup dict of each Sentrix_ID : disease/brain area code.
treatment = {row['description']:row['source'] for idx,row in meta[['description', 'source']].iterrows()}













table 1 treatment/control N
AD, STG    67
AD, IFG    60
ND, STG    60
ND, IFG    57
Name: source, dtype: int64







[4]:





# sample names are repeated 3 times per sample in original data and not extracted correctly with methylcheck
#raw = pd.read_csv('/Volumes/LEGX/GEO/GSE156984/GSE156984_STG_Matrix_signal_intensities.txt', sep='\t')
#pvals = raw[raw.columns[::3]]
#meth = raw[raw.columns[1::3]]
#unmeth = raw[raw.columns[2::3]]
#print( len(pvals.columns), len(meth.columns), len(unmeth.columns), len(sample_names) )

def calculate_m_value(methylated_noob, unmethylated_noob, offset=0):
    """ the log(base 2) (1+meth / 1+unmeth) intensities (with a min clip intensity of 1 to avoid divide-by-zero-errors, like sesame)"""
    methylated = np.clip(methylated_noob, 1, None) + offset
    unmethylated = np.clip(unmethylated_noob, 1, None) + offset

    with np.errstate(all='raise'):
        intensity_ratio = np.true_divide(methylated, unmethylated)
    return np.log2(intensity_ratio)

def apply_matrix_m(meth, unmeth, sample_names):
    m_values = {}
    for i in range(len(meth.columns)):
        m_values[sample_names[i]] = calculate_m_value(meth.iloc[:, i], unmeth.iloc[:, i])
    return pd.DataFrame(data=m_values)

#m_values = apply_matrix_m(meth,unmeth,sample_names)








[6]:





#m_values
betas








[6]:
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About BumpHunter

(only demo notebooks are included now. Full integration planned for a future version)

This includes a Jupyter Notebook running bumphunter (from R) with variations in parameters to see how sensitive the DMPs found are to different settings like cutoff percentile values, maximum cluster size, preprocessing method, and using Beta vs M-value as the methylation measure in the model.

This function performs the bumphunting approach described by Jaffe et al. International Journal of Epidemiology (2012). The main output is a table of candidate regions with permutation or bootstrap-based family-wide error rates (FWER) and p-values assigned.

The general idea is that for each genomic location we have a value for several individuals. We also have covariates for each individual and perform regression. This gives us one estimate of the coefficient of interest (a common example is case versus control). These estimates are then (optionally) smoothed. The smoothing occurs in clusters of locations that are ‘close enough’. This gives us an estimate of a genomic profile that is 0 when uninteresting. We then take values above (in absolute value) cutoff as candidate regions. Permutations can then performed to create null distributions for the candidate regions.

The simplest way to use permutations or bootstraps to create a null distribution is to set B. If the number of samples is large this can be set to a large number, such as 1000. Note that this will be slow and we have therefore provided parallelization capabilities. In cases were the user wants to define the permutations or bootstraps, for example cases in which all possible permutations/boostraps can be enumerated, these can be supplied via the permutations argument.

Uncertainty is assessed via permutations or bootstraps. Each of the B permutations/bootstraps will produce an estimated ‘null profile’ from which we can define ‘null candidate regions’. For each observed candidate region we determine how many null regions are ‘more extreme’ (longer and higher average value). The ‘p.value’ is the percent of candidate regions obtained from the permutations/boostraps that are as extreme as the observed region. These p-values should be interpreted with care as the theoretical proporties are not well understood. The ‘fwer’ is the proportion of permutations/bootstraps that had at least one region as extreme as the observed region. We compute p.values and FWER for the area of the regions (as opposed to length and value as a pair) as well. Note that for cases with more than one covariate the permutation approach is not generally recommended; the nullMethod argument will coerce to ‘bootstrap’ in this scenario. See vignette and original paper for more information.
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Differentially methylated position (DMP) regression and visualization


[1]:





import numpy as np
import pandas as pd
import math
import time
import methylprep
import methylcheck








[2]:





%load_ext autoreload
%autoreload 2
from methylize import diff_meth_pos, volcano_plot, manhattan_plot








[3]:





#Install joblib module for parallelization
import sys
!conda install --yes --prefix {sys.prefix} joblib













Collecting package metadata (current_repodata.json): done
Solving environment: done

# All requested packages already installed.








[4]:





# load a processed dataset and the phenotype list per sample.
# in CLI I ran `python -m methylprep process -d GSE69852_copy --betas --m_value to make these files.
betas = pd.read_pickle('../methylize/data/GSE69852_beta_values.pkl')
m_values = pd.read_pickle('../methylize/data/GSE69852_m_values.pkl')
betas.head()
#m_values.head()








[4]:
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Demonstrating how to filter probes before analysis


[1]:





import numpy as np
import pandas as pd
import math
import time








[54]:





import methylcheck
# loading previously processed data from methylprep
meta = pd.read_pickle('~/GEO/test_pipeline/GSE49618/sample_sheet_meta_data.pkl')
print(meta.head())
test = pd.read_pickle('~/GEO/test_pipeline/GSE49618/m_values.pkl')
print(test.shape)
test2 = methylcheck.exclude_sex_control_probes(test, '450k', verbose=True)
sketchy_probes_list = methylcheck.list_problem_probes('450k')
test3 = methylcheck.exclude_probes(test2, sketchy_probes_list)













  Cheez BuffyCoat  Sentrix_ID Sentrix_Position Sample_Group Sample_Name  \
0     1         0  6285625091           R05C01         None   8.24 CD34
1     1         0  7796806148           R03C02         None    7.25 PMN
2     1         0  7796806148           R01C02         None   7.25 PROS
3     1         0  6285625091           R06C02         None     9.1 PMN
4     2         0  6285625091           R03C01         None   8.10 CD19

  Sample_Plate Sample_Type Sub_Type Sample_Well Pool_ID      GSM_ID Control  \
0         None       Blood    Whole        None    None  GSM1185586   False
1         None       Blood    Whole        None    None  GSM1185602    True
2         None       Blood    Whole        None    None  GSM1185600   False
3         None       Blood    Whole        None    None  GSM1185593   False
4         None       Blood    Whole        None    None  GSM1185584   False

                      Sample_ID
0  GSM1185586_6285625091_R05C01
1  GSM1185602_7796806148_R03C02
2  GSM1185600_7796806148_R01C02
3  GSM1185593_6285625091_R06C02
4  GSM1185584_6285625091_R03C01
(485512, 21)
Array 450k: Removed 11648 sex linked probes and 916 internal control probes from 21 samples. 473864 probes remaining.
Discrepancy between number of probes to exclude (12564) and number actually removed (11648): 916
It appears that your sample had no control probes, or that the control probe names didn't match the manifest (450k).
Of 473864 probes, 334500 matched, yielding 139364 probes after filtering.
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%load_ext autoreload
%autoreload 2
from methylize import diff_meth_pos, volcano_plot, manhattan_plot













The autoreload extension is already loaded. To reload it, use:
  %reload_ext autoreload
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#Install joblib module for parallelization
import sys
!conda install --yes --prefix {sys.prefix} joblib













Collecting package metadata (current_repodata.json): done
Solving environment: done

# All requested packages already installed.








Testing logistic regression
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##Run a logistic regression on the methylation data. Must have exactly two phenotypes for logistic regression.
test_results = diff_meth_pos(
    test3,
    meta, column='Cheez',
    regression_method="logistic",
    export=False)













Additional parameters: {'column': 'Cheez', 'export': False}
Warning: meth_data was transposed: (21, 139364)
All samples with the phenotype (2) were assigned a value of 0 and all samples with the phenotype (1) were assigned a value of 1 for the logistic regression analysis.































Testing Manhattan plot visualizations
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manhattan_plot(test_results, cutoff=0.05, palette='default', save=False) #, label_prefix='')













NaNs: 8961
Warning: 8961 probes were removed because their names don't match methylize's lookup list
Total probes to plot: 130403
CHR-01 13398 | CHR-02 10020 | CHR-03 7510 | CHR-04 5574 | CHR-05 6990 | CHR-06 6567 | CHR-07 7623 | CHR-08 5468 | CHR-09 2771 | CHR-10 6680 | CHR-11 8489 | CHR-12 7194 | CHR-13 3365 | CHR-14 4528 | CHR-15 4345 | CHR-16 5577 | CHR-17 8297 | CHR-18 1947 | CHR-19 7343 | CHR-20 3115 | CHR-21 1238 | CHR-22 2364
p-value line: 1.3010299956639813
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Testing linear regression
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# Run a linear regression on the methylation data versus age of sample
test_results2 = diff_meth_pos(test3, #test_M_values_T.sample(60000, axis=1), #.iloc[:,:], # ALL probes. slow!
                              meta, column='Cheez',
                              regression_method="linear")













Additional parameters: {'column': 'Cheez'}
Warning: meth_data was transposed: (21, 139364)
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manhattan_plot(test_results2, cutoff=0.000001, palette='Gray3', save=False)













Total probes to plot: 130403
CHR-01 13398 | CHR-02 10020 | CHR-03 7510 | CHR-04 5574 | CHR-05 6990 | CHR-06 6567 | CHR-07 7623 | CHR-08 5468 | CHR-09 2771 | CHR-10 6680 | CHR-11 8489 | CHR-12 7194 | CHR-13 3365 | CHR-14 4528 | CHR-15 4345 | CHR-16 5577 | CHR-17 8297 | CHR-18 1947 | CHR-19 7343 | CHR-20 3115 | CHR-21 1238 | CHR-22 2364
p-value line: 6.0
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Testing Volcano plot visualizations
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volcano_plot(test_results2, fontsize=16, cutoff=0.05, beta_coefficient_cutoff=(-0.05,0.05), save=False)













Excluded 801 probes outside of the specified beta coefficient range: (-0.05, 0.05)
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Import Modules

First, run pip install methylsuite from your computer’s command line terminal.


[1]:





import methylprep
import methylcheck
import methylize
import pandas as pd
from pathlib import Path
filepath = Path('/Users/patriciagirardi/tutorial/GPL21145')










Download Example Data

You may use the command line interface (CLI) of methylprep to download one of the >100,000 datasets stored on NIH’s GEO repository.

We will use the CLI to download a an example dataset from GEO (GSE147391) for this walkthrough. Run the following command from your computer’s terminal to do so.

>>> python -m methylprep -v download -i GSE147391 -d <filepath> -o





where <filepath> is the directory you would like to store the files in. The -o option is used to download the data without processing it.

Alternatively, visit this page [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147391] and download the raw IDAT files from GSE147391 for this tutorial.



Processing raw IDAT files using methylprep


Introduction

methylprep has been tested and benchmarked to match the outputs of two popular methylation data processing R packages: sesame [https://bioconductor.org/packages/release/bioc/html/sesame.html] (v1.10.4) and minfi [https://bioconductor.org/packages/release/bioc/html/minfi.html] (v1.38).

The processing pipeline is as follows: - infer type-I channel switch - NOOB (normal-exponential convolution on out-of-band probe data) - poobah (p-value with out-of-band array hybridization, for filtering lose signal-to-noise probes) - qualityMask (to exclude historically less reliable probes) - nonlinear dye bias correction (AKA signal quantile normalization between red/green channels across a sample) - calculate beta-value, m-value, or copy-number matrix



More details on methylprep’s processing pipeline

One of the first processing steps of methylprep is to infer the color channel for type I probes. Type I probes operate on a single color channel. Each probe’s color channel should be provided as part of the manifest file. Occasionally, these manifest files are inaccurate. methylprep will infer and reset the probe’s channel in the manifest based on the actual signals from each channel.

Another issue that arises with multi-channel usage is dye-bias. This is a phenomenon where the red and green channels have different signal intensities. They have to be corrected in order for the rest of the processing pipeline to be accurate. methylprep uses quantile normalization between red and green channels within a sample to correct this. This is also known as a nonlinear method of dye bias correction (comparable to the one SeSAMe uses).

Out-of-band (OOB) probe data is used as part of the preprocessing pipleline. Recall that type I probes utilize only one color channel but have two probes for one locus. The probe that does not match the actual methylation state of the sample still captures a measure of fluorescence that can be used to help estimate background noise. In other words, if a type I probe is operating on the green channel to capture the methylation state of the locus, we will still have flourescence measures from
the red channel (and that fluorescence from the red channel is “OOB” data).

There are many ways to normalize methylation data, but the most widely used method is normal-exponential convolution on out of band probes (NOOB). The normal-exponential (normexp) convolution model was developed as part of the RMA algorithm for Affymetrix microarray data. The model assumes that the observed intensities are the sum of background noise and true signal components. The background is normally distributed and the signal is exponentially distributed. NOOB is simply using the
normexp model on out of band probe data.

Detection P-values are a measure of how likely it is that a given signal is background fluorescence. There are a few methods of calculating these detection p-values. Illumina’s GenomeStudio uses negative control probes in the array to parametrize a Guassian distribution and recommends p-values>0.05 to be excluded. minfi, another popular package for methylation array analysis in R, uses a similar method but with the M and U probes combined into one signal and a background distribution to
calculate the Z-score. The background distribution is calculated by combining the color channel(s) of the corresponding probe (type II probes will have both red and green). And they recommend the more stringent exclusion criteria of p-values>0.01 being excluded. SeSAMe and methylprep implement a different method, known as pOOBAH (P value Out Of Band probes for Array Hybridization) where they use the OOB signal of all type I probes to calculate an
empirical cumulative distribution function. methylprep users have the option to save pOOBAH values as an output file after sample processing.



Processing Data

It is easiest to run this from the CLI. To do so, run the following command from your computer’s terminal.

>>> python -m methylprep process -d <filepath> --all





<filepath> specifies where the manifest and IDAT files (and sample sheet, if any) are stored.

The --all option at the end tells methylprep to save output for ALL of the associated processing steps. The output files will be as follows:


	beta_values.pkl


	poobah_values.pkl


	control_probes.pkl


	m_values.pkl


	noob_meth_values.pkl


	noob_unmeth_values.pkl


	meth_values.pkl


	unmeth_values.pkl


	sample_sheet_meta_data.pkl




These files will be saved in the same directory as the data. methylprep will also create two folders to store processed .csv files. If users are interested in the probes that failed poobah, they are included in the .csv file outputs. They are automatically masked from the beta_values.pkl file.


Using methylprep from a Jupyter Notebook

methylprep also offers a scikit-learn style interface for users to run within jupyter notebooks or a similar IDE. We recommend using the CLI for methylprep–IDEs tend to process more slowly, especially for large batches–but users are able to get most of the package’s functionality from within an IDE.

methylprep.run_pipeline command is the IDE equivalent of methylprep process. The output, if left to default, is a set of data containers. Alternatively, users may specify betas=True or m_values=True to get a dataframe of their chosen values. We also recommend setting export=True to get output files saved as well. That way you can easily load the data in the future instead of running this command every time you open the notebook. The only required argument for this function is
the directory where the raw data is stored.
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data_containers = methylprep.run_pipeline(filepath, export=True)













INFO:methylprep.processing.pipeline:Running pipeline in: /Users/patriciagirardi/tutorial/GPL21145
INFO:methylprep.processing.pipeline:Found 4 additional fields in sample_sheet:
source | histological diagnosis --> histological_diagnosis | description | Sample_ID
Reading IDATs: 100%|██████████| 16/16 [00:26<00:00,  1.67s/it]
INFO:methylprep.files.manifests:Downloading manifest: HumanMethylationEPIC_manifest_v2.csv
INFO:methylprep.files.manifests:Reading manifest file: HumanMethylationEPIC_manifest_v2.csv
Processing samples: 100%|██████████| 16/16 [25:13<00:00, 94.61s/it]
INFO:methylprep.processing.pipeline:saved noob_meth_values.pkl
INFO:methylprep.processing.pipeline:saved noob_unmeth_values.pkl
INFO:methylprep.processing.pipeline:[!] Exported results (csv) to: ['/Users/patriciagirardi/tutorial/GPL21145/203163220027', '/Users/patriciagirardi/tutorial/GPL21145/203175700025']
INFO:methylprep.processing.pipeline:saved sample_sheet_meta_data.pkl
INFO:methylprep.processing.pipeline:saved control_probes.pkl
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data_containers[0]
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<methylprep.processing.pipeline.SampleDataContainer at 0x7fda1941a3a0>










Quality control with methylcheck


Loading processed data

You may use methylcheck.load_both() to load both the beta values and metadata at the same time. Note that methylcheck expects the formatting used by methylprep in this command.
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df, meta = methylcheck.load_both(filepath)
meta.head()













INFO:methylcheck.load_processed:Found several meta_data files; attempting to match each with its respective beta_values files in same folders.
WARNING:methylcheck.load_processed:Columns in sample sheet meta data files does not match for these files and cannot be combined:['/Users/patriciagirardi/tutorial/GPL21145/GSE147391_GPL21145_meta_data.pkl', '/Users/patriciagirardi/tutorial/GPL21145/sample_sheet_meta_data.pkl']
INFO:methylcheck.load_processed:Multiple meta_data found. Only loading the first file.
INFO:methylcheck.load_processed:Loading 16 samples.
Files: 100%|██████████| 1/1 [00:00<00:00,  3.48it/s]
INFO:methylcheck.load_processed:loaded data (865859, 16) from 1 pickled files (0.318s)
INFO:methylcheck.load_processed:meta.Sample_IDs match data.index (OK)
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import methylize
import methylcheck
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
from sklearn.impute import SimpleImputer
from sklearn.linear_model import LinearRegression
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betas, meta = methylcheck.load_both('../data/asthma') #load in the beta values and metadata
betas = betas.T













INFO:methylcheck.load_processed:Found several meta_data files; attempting to match each with its respective beta_values files in same folders.
WARNING:methylcheck.load_processed:Columns in sample sheet meta data files does not match for these files and cannot be combined:['../data/asthma/sample_sheet_meta_data.pkl', '../data/asthma/GPL13534/GSE157651_GPL13534_meta_data.pkl']
INFO:methylcheck.load_processed:Multiple meta_data found. Only loading the first file.
INFO:methylcheck.load_processed:Loading 40 samples.
Files: 100%|██████████| 1/1 [00:00<00:00, 10.86it/s]
INFO:methylcheck.load_processed:loaded data (485512, 40) from 1 pickled files (0.108s)
INFO:methylcheck.load_processed:Transposed data and reordered meta_data so sample ordering matches.
INFO:methylcheck.load_processed:meta.Sample_IDs match da